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Asymptotic scaling behavior of block entropies for an intermittent process

Jan Freund
Institute of Physics, Humboldt-University Berlin, Invalidengieal10, D-10115 Berlin, Germany
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Intermittent systems play a prominent role in the field of dynamical phase transitions. Their extraordinary
characteristics also show up when applying the concept of block entropies to symbol sequences which are
generated through the method of symbolic dynamics. We investigate the dependence of those dynamical
entropies on the block length In the asymptotic limit, i.e., fon—o, an analytic treatment is possible when
starting from the assumption of independent laminar laps. The results are important for a refined characteriza-
tion of intermittent systems. Moreover, they bring intermittent systems in contact with information-carrying
sequences which exhibit a very special scaling behavior of dynamical entrpfpi€¥3-651X96)10605-X]

PACS numbeis): 02.50-r, 05.45:+b, 47.27.Cn, 47.27.Eq

[. INTRODUCTION i=1,...m) are chosen independently according to a given
distribution p(i). In the context of symbolic dynamids]
The notion of intermittency was first introduced in con- we only distinguish between the laminar region, symbol
nection with hydrodynamic systems at the transition point'0,” and the chaotic region, symbol “1.” Hence
from the laminar to turbulent regime. Manneville anda typical symbol sequence will look like
Pomeau numerically solved the differential equations of the¢’‘0000000000100000010000000000101@00. . We re-
Lorenz model[1]. Above a threshold value for an external gard the symbols “0” and “1” as elements of hinary
control parameter they observed the transition from a stable alphabet A={0,1}. In the general case we deal with an al-

periodic motion to a pattern where tha@minar regime was phabet consisting of letters, i.e.A={aq, ... .,a,}.
interrupted bychaotic (or turbulen) bursts An appropriate The statistics of subsequences (. . . ,c,) (with ¢c;e A
Poincareplot revealed the underlying mechanism: the tran-Vi=1, ... n) of lengthn, also namedch words contains

sition could be related to a fixed point losing its stability information about the system under consideration. The sta-
when the control parameterexceeds the critical value. Of tistics can be derived either by analyzing the frequencies of
special importance was their observation that this scenarin words excerpted from a sample string or by applying ana-
offered auniversal route to chaog2]. Additionally it pro-  lytical methods. Here, we will use the last mentioned ap-
vides a universal mechanism forf Iiioise in nonlinear sys- proach and hence do not have to care about finite sample size
tems[3]. Subsequently intermittency has been detected ieffects[9,10.. We denote the probability of an arbitrary
many physical systemsee[4,5] and references thergin word by the symbop(c,, ... .c,).

According to the different ways a fixed point can lose its  The informational analysis of a dynamical system pro-
stability [4], three types of intermittenc,Il,lll ) are distin-  ceeds by inserting thoseword probabilities into functionals
guished. Here, we will be mainly concerned with intermit- which fulfill the axioms of an information measurgl]. The
tency type I; in this case there exists a maximal length oineasures we use in this work are thieck entropies H
laminar phases which will be denoted by. The decisive (n=1,2,...)[12] related to the Shannon informatiph3]:
properties of an intermittent system are the length distribu-
tions for the laminafturbulen} lengths. It is a common as-

sumption that the successive laps are independent of eachHp:=— 2 p(C1, ... Co)logyp(Cy, - .. Cp).
other[4,6,7]; this assumption often is formulated by describ- (Cqy-- Cn) € A"
ing the dynamics as eegenerative process (1)

Whereas the length distribution of laminar phases sensi- ) ) ) .
tively depends on slight changes of the dynamics, the typicdFhoosing logarithms to base is favorable since then the
length of chaotic bursts does not. This is easy to understanfiequality O<H,=<n holds.
since closing the narrow chanr{d] a little further strongly The H, can be interpreted as the average uncertainty
affects the laminar creep but the chaotic behavior outside th&hen trying to predict am word (a trajectory segment of
channel region essentially remains the same. A proper redengthnr). Dividing H, by n yields the average uncertainty
caling of time(by the inverse average chaotic lenggtiows  per symbol, i.e.,H(n):=H,/n. lIts limiting value for
for an idealized description of the chaotic phases as a one— > was named thentropy of the sourcgl4]:
step process.

The model we consider here relates to a time discrete h:=limH(n). (2
intermittent dynamics. Successive laminar lengthgfor n—o

The entropy of the source is closely connected with the
“Electronic address: janf@summa.physik.hu-berlin.de Kolmogorov-Sinai entropj15,18.
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The notion of anemoryassigned to a symbol sequence isi.e., for n—«. The basic idea of this formula rests on the
linked with the improvement of the prediction of a symbol fact that the distribution of laminar lengths will be reflected
Ch.1 given knowledge of its prehistoryc(, ... c,). This by relative frequencies of subwords contained in a subse-
idea naturally involves conditional probabilities and, henceguence of lengtm>(l).
the corresponding informational quantitiés, are named

conditional entropiesthey are defined by Il. DERIVATION OF THE ASYMPTOTIC SCALING
BEHAVIOR
hn: :< . EEA P(CnralC1y -+ - Cn) In a previously published papg26] we have already de-
n

rived the expression to be evaluated yielding the block en-
tropy H, . Here just repeat the basic arguments.
xlog\p(Cn+alcy, - - Cn) 3 A sample string is constructed as explained in the Intro-
(€1, ) duction with “0” denoting the laminar phase and “1” the
chaotic burst(the end of the laminar phasétermination
symbo). Hence an arbitraryn word excerpted from the
Correlations existing between a subsequente, {. . €.) sample string is a binary sequence. It can be decomposed
oen into a collection of subwords of different lengths. Denoting

and the SymbOb““ improve the chanpe of QuUessItg,;  ihe length of theth subword within then word byl; we can
successfully, i.e., the average uncertainty of prediction is di-

minished. Thus théa,, will monotonically decline when in- symbolically represent this word by

creasing the length of noticed prehistory q;, . .. c,). It n=(ly, ... @
can be shown that fastationary and ergodic sourc¢$l,14] - ' '

the limit of the h, for n—c exists and coincides with the \yith the restriction

entropy of the source, i.e.,

k
lim h,=h. (5 > li=n. (8)
=1

n—oo

=Hp1—Ha(n=1,2, .. ). (4)

The profile ofh,, is directly related to theffective measure Special attention has to be paid to this restriction because the
complexity(EMC) defined by Grassberggt7]: first and last subword within the word are mostly cut out of
a longer subwords found in the sample string. The probabil-
ity of hitting a word of length in the sample string ip; and
there are exactly different letters which can be chosen as
the starting position of the reading frame. Then follows the
The specific way thdn, approach this limit can be used to bulk of phases in the center of the word and finally the
characterize a dynamical syst¢t8]. For Markov sources of right edge is determined by the restricti@). It is important
order m[19] the conditional entropies already reach theirto notice that in the limit of sufficiently longn words the
limit for n=m, i.e.,h,=h=H,,,,—H,, for all n=m [19]. bulk will dominate the statistics. The different possibilities of
Hence such a Markov source possesses a memarystéps  placing theintron symbol yield a factor=" ;ip; which is
[20]. identified as the mean length and, henceforth, will be de-
For most systems thle, decay exponentially17,18,2],  noted by the symboll). Note that there is a maximum
i.e., (h,—h)~exp(9n). Then the inverse decay rate * length denoted byn which means we are restricted to inter-
can be defined as an effective memory; a Markovian apmittency of type I.
proximation of sufficiently high order will be a very effective Because of selecting the laminar phases independently of
description. each other the probability for an arbitranyword, denoted
A subexponential decay of the conditional entropies is arP(n), can be written as
exceptional but rather interesting case. [Sakisy and co- -
workers have shown that intermittent processes belong to k
this type of systeni18,22. Moreover, a subexponential de- P(m=I1 p(hy). 9
cay was found for sequences which are not directly related to =1
a dynamical system but instead are the result of an evolu-

tionary process, e.g., literary texts and coded mi&23- this probability invariant there is a whotdass of equivalent

23]. This obse_rvation inspir_es thelintriguing ta;k of Seamhin%\/ords This fact motivates an occupancy number representa-
for a connection between intermittent dynamics and mecha\t—ion designating the whole class by the symbol

nisms underlying the creation ofatural symbol sequences ki=(Kq, ... Kky). Here k e{0,1,...n} stands for the

In this paper we report on the informational analysis of & mber of laminar phases within a representativevord

binary sequence which was constructed by the aforemen " . L X
tioned independent concatenation of laminar laps with ran:—/gr:'ctt;] (g?\:rear:gforlriggit: 'th-irshfe r?:;relzt;gtri]oaotoa fixed word
domly distributed lengths. As explained above, it mimics the 9 P

symbolic dynamics of an intermittent systeftype I). We m
present the result of a numerical simulation and, moreover, 2 iki=n. (10)
an analytic formula for thél, valid in the asymptotic limit, =

o0

EMC := ZO (h,—h). (6)

Since permuting the order of the laminar phases leaves
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We can readily write down the contribution of a certain means that we solve the problem using the characteristic

class to then-word entropy:

(Z{L1k)!

Ky, oK)= = () k)

X[.Hl |o(i)ki}logz|jH1 p(i)"i]. (1D

The first factor is linked to the starting phdseas explained

function.[Throughout the text we adopt the following nota-
tion: ~ is the imaginary unit, not to be confused with the

above. The next is a combinatorial expression reflecting the
number of the members of the clads (. . . Kk,,). The third

term is the probability of a representative of that class and
the last is the usual information gained when noticing this

n word.
Defining the class probability(ky, . . . k) by

o Gkt [ 5
A=) g | e a2

Eq. (11) can equivalently be written as

El kilogzp<i>).
(13

TKye, oK)= = AKg,s . Ki) X

Summing over all classes compatible with restrictid®)
the completen-word entropy yields

=2, ki, .. k10G2P (1), (14

------

where we have used the abbreviation

<ki>zrkl ..... k= ETK AKg, .o kpki (15

IEREEE. m

and where the dagger is a reminder of the conditibg).
We account for the restrictiofil0) by inserting a Kro-
necker § and additionally introduce a new variabl¢ to-

gether with another Kronecke$ which imposes the con-

straintN=={" k; . Hence,

n n n
k)t =(| .
W, =02, o 2,
N!
— k PP km
Xkl!--‘km! p(1)“t-- - p(m)

X 6

iZmlk n) (Zmlki,N)ki. (16)

The replacement

100 lu-o an

index i; a:=(a;,...,am) and a-b:=3=",ab;]. This
yields
(9 n n n
T _
(ki ... km)_/<|>3wi(h|§=:1 k12=0 Km0
|
- ki. .. Km
X P p(m)
m m
x 8| >, iki,n)é(E ki,N)
=1 =
Xexp —/w-K) ) : (18
=0
Defining now
n n n
Flo)=2 2 - 2 o oy P pm)

° Elikn”)‘s(ﬁl kwN)exrt—zw, 19)

we can write Eq(18) as

t N
Kidy, ..., km):/'<|>m[|:(2)]|2=g (20)

and Eq.(14) as

m P
=2 AN G IF(@)ly=ologop(. (21

Hence the remaining task is to calculate the characteristic
function F(w).

The first step in this direction is to replace the sum by an
integral, the discrete argumerks, ... Kk, and N by real
numbers, and accordingly the Kroneck#&s by & distribu-
tions; i.e.,

n n n N!
F(g)—Jl dNJOdkl. .. fodkm—kl! Tk

X p(1)k- - - p(m)km
X8| > iki—n)é(z ki—N)exp(—m.k).
1= =1 -

(22

Next we wuse Stirling's formula for the factorials
x!=(x/e)*y2mxexp@®,/12x) with 0<®,<1 and approxi-
mate®,/12x~0. This is allowed fom—c since then(with
very high probability all thek; fori=1,... mandN even-
tually become sufficiently large. The precise mathematical
argument can be found {27]. This yields for the character-
istic function
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n n n different laminar phases approach the underlying probabili-
o) f dNJ dkq f dk ties of the length distribution, we exparkg/N aroundp;,
which corresponds to the substitution
27N p( p(i)
X 2 kiIn—-—
V2mky 2w /N k=N(pi 7). 24
m m
sl > ik-—n)&(E k-—N)exp(—;w-k).
S = == d™kdN=N"d™ 5dN. (25

(23

For reasons of convenience we defime =p(i). Since in  The #; are the relative frequencies’ deviations from the prob-
the asymptotic regima—« the relative frequencies of the abilities. We obtain

n/N—p n/N—pp, N™/2 7N m
Flo)~ def e [ . exp(—Z N(p+ 7)
~Pm V27Npy(1+ 71/p1) - - - V27NPm(1+ 7m/Prm) =
19 14 m m
x| B T )5 N, ini+N<I)—n)6(N2 m)exr[—/Nw-(pm)], (26)
Pi 2p; 3p =1 = A S/

|
where the(infinite) series in square brackets corresponds to n n/N— p1
In(1+ 7, /p;). Flo f de f dog---
Now we choose the Fourier representation for bdidis- —lm) 2
tributions: fn/prm 27N
X

d
—Pm 77m\/271'p1/N---\/271'pm/N

5 N;immm—n) ><exp<

_J' do .
= 7wﬁex —sa

R

I\JII—‘
iy
o

N ini+N(I>—n> , m
=1 Xexr{—/a( NZl i7h+N<|>_””
27 m
><exp< —/,BNZl m)exp{—/rNg (p+n)].
(29

dg O

NE 77,) f 2—exp( — /BN, m)- (28)

o =1 We see that the integrand is a productnofGaussian func-
tions, originating from the polynomial distribution, multi-
plied by (3Xm) exponentials linear in the; , two originat-
ing from the § distributions and one stemming from the
In the limit n— oo we retain just the most dominant terms in characteristic function.
7, which corresponds to retaining only the quadratic term in  |n the limit n— the value ofN tends to infinity too(in
the exponentialoriginating from the polynomial distribu- fact, in this casé&N—n/(l)). Since the variance of the Gaus-
tion; the linear term is absent because of the conditiorsians is given by/o;=+/p;/N~ 1/J/N the integrand eventu-
=M ,7=0) and, furthermore, to approximating the bracketsally concentrates around values~0, and a replacement of
under the square roots by the factor 1. Of course, dhe the limits —p; (n/N—p;) by —oo (+) results in negligible
distributions are not affected by any approximation. Thiscorrections. Performing tha integrations with respect to the
yields 7; yields
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o= [fon[ ¢

—/a(N(I)—n)]exp( - %Nzl pi(i a+ B+ w))?

f \/_ Nexg — No-p

(30

Next we perform the integration with respectgo Defining

m m

oy 3:<|2>_<|>2:§1 izpi—izl ijpip;

m

=10y~ (@)=3 iwp- 3 iopp,

Flo)~

\/_U”f \/_exp( /ngex;{

Performing the substitutiog: = (1) —n/N yields

(H-1

Flo=7 \/27Tcr||<|>/nJ’(l) o (1— y/<|>)3’zeXp(_

For the partial derivative with respect tg we achieve

h-1
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m

m
oww:=<w2>—<w>2=i§1 w?pi—ilZzl ® ;PP

we obtain

F<w>~JdNJ 5 ex — Nw-p—/a(N(1)=n)]

1
Xexp{ - EN(aza'” +2a0,+t0,,) |- (31

The integration with respect ta can be performed and we
obtain

/<I>—[F(w )l pix f exp{— v : )(1+
w=0~ <|> ' \/2mr||<l>/n (y-n(1- y/<|))5’2 2oy (/) (1=yK1)) o

In accordance with Eq21) we finally end up with

:%( ; Ingpi)'70(na<|>!o'll)

(3 e

<— 2 Pilogpi— == 71(” (Dyon) (39
<|>H[p]]o (n,{1), o)+ <|>A[p]71 n(l),on),

(36)
where the functions’y and.7; are defined by

-1

\/27T(r||<|)/nj<l> n(1— y/<|>)52
y? 1
><ex‘(‘<2m.<l>/n> (L—y/(Iy))"
37

To(n(l),0y):=

((I}—n/N)2+0'||0'ww—0'|2w—/2cr|w(<|)—n/N))
20'||/N ' (32)
(y2+0-||wa_Ulzw)+”‘(20-||2'9_20-|wy))
2oy () (L—y{1)) 33
(<|>—i)y)_ 34
[
, o (H-1 ydy
.7l(n1<|>10-)- '—27To'||<|>/nj(|)ﬂ (1_y/<|>)5/2
<esf o) )
R T Qo) (T—yKy )
(38

Note thatH[ p] is just the entropy of the length distribution
of the laminar phases. It can be shown that the functional
Al p] vanishes for distributions that are symmetric with re-
spect to the mean length); hence it can be regarded as an
asymmetry term

For sufficiently largen the integrands of/; and.7; es-
sentially are dominated by the Gaussian part. In the asymp-
totic limit n—o the integrals can be estimated safely by
replacing the finite limits by-o (+ %) and additionally by

approximating the terms -1y/(l)~1. This yields
lim,_..7,=1 and lim,_ .7, =0. Hence,
H oo H[p] (39
n — <|> Pl

This is exactly what was obtained by intuitive reasoning
[26].
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! FIG. 3. Enlarged asymptotic decay region as dictated by the

) ) ~ numerically evaluated formuleg6). A slow decay can be detected.
FIG. 1. A histogram plot of the chosen laminar length distribu- The dashed line shows the linfit= 0.496 734.

tion (41) with resulting values(1)~5.5, o,~2.75, H[p]~2.73,

Alp]~-0.26. some deviation from a simple Bernoulli process. We expect

a rapid decrease of the, approaching the limit
An analytic evaluation of the integral87) and(38) is not P fte, app g

possible and most basic approximations which render the H[p]
integrals calculable eventually sacrifice the slight deviations h= —= (40)
from the simple Gaussian form, hence destroying the whole "

effect. This is even worse when intending to calculate the

h, since then we have to subtract two quantities, ; and  for values aroundl). The final decay of thé, for n>(I)

H,, which differ only slightly. We regard formul@36)  should be described by our theoretical form(88).
supplemented by37) and(38) as our final result. In the next The statistics of the intermittent sequence we consider is
section we will exemplify the theoretical result by evaluatinggoverned completely by the distribution of laminar lengths
the integralsiand all other ingredientswumerically. p(i). We choose

i %exp( —2i)

_ o =2ip()
The choice of an example is restricted by the fact that we

want the asymptotic region, i.en>(I), not to be too far out. o histogram plot of this distribution is given in Fig. 1.
On the other hand, it should not be too simple in order to see The ingredients for our formulé36) can be calculated

and read({l}~5.5, o;~2.75, H[p]~2.73, A[p]~ —0.26.
This choice is supposed to mimic the length distribution of

IIl. NUMERICAL EVALUATION AND SIMULATION p(i)= (41

0.70 words in a realistic text.

0.65 | 16°

0.60 +

hll
055 | GOt
h -h -3 oo RN S,
. n 10 r O (RPN N
050 F__". ..._,?.Qg@ge@ggqqg@g@ooa@moocooma@@@ome@ °©
0.45 : : : :
0 10 20 30 40 50
n
10"
10 100
FIG. 2. The conditional entropies for the length distributi{d) n

in the rangen=0,1, . . . ,50; black circles: string simulatidsample
length 10) results for n=0,1,...,24; diamonds: numerically FIG. 4. A double logarithmic representation dfii,h) [nu-

evaluated formuld36) for n=10, .. .,50. The dashed line shows merically evaluated formul&36)] yields a straight line. This indi-
the limit h=0.496 734. Note that the finite sample size effect iscates a power law decay, i.eh(~h)~n"¢. The exponent was
crucial for simulation dat#,, close to the limith. obtained by a nonlinear fit yielding=0.492.
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0.800010 The result is a declining straight line which indicates a
power law decay. A nonlinear fit yields
<&
0.006 462
(hp=h)~ 57— (42
<

Surprisingly, the asymptotic decay is of a subexponential
h, 0800000 ----------- RGO type.

One could argue that this is a generic effect of the asymp-
totic formula and not of the system itself. A similar investi-
gation for the distributionp(i)= 3 for i=1,2,3,4 yields a
different behavior. The representation of the numerically
evaluated formuld36) corresponding to Fig. 3 in this case

0789990 10 20 30 0 50 indicates a “Markov-like” behavior, i.e., thl, reach their
n theoretical limith=0.8 for n=16 (see Fig. 5.
Of course, this is no proof since our humerical evaluation
FIG. 5. Decay of conditional entropies for an equidistribution of js restricted by finite accuracy. At least this question may

laminar lengthsp(i)=0.25 (=1,2,3,4). The data indicate a stimulate further investigations.
“Markov-like” behavior (of order 16.

IV. CONCLUSION
According to (400 we calculate lip_.,h,=h
=0.496 73 .. .. Figure 2 depicts thén, for values in the
rangen=0,1, . .. ,50; black circles are the string simulation

We have investigated the decay of conditional entropies
derived from binary sequences which were related to a re-
(sample length 10 results fom=0,1, . . . ,24; diamonds are generatl\(e process, 1.e., m'gerrr'nttency type | with mdepe_n—

dent laminar phases. Investigations were performed by string

the numerically evaluated formu(&6) for n=10, . . .,50. . . S i .
The plot cleyarly shows the rapid decay for values up toS|mulat|ons(affected by finite sample size effecnd addi-

n~{ly~5. The numerical values are affected by the finitetionally by applying a thearetical approach valid in the as-

sample size which generally tends to diminish the values oymptotic regimen—c. In accordance with intuition a rapid
h,. Moreover, it can be seen that our analytical approacrgecay close to the limit value=H[p]/{l) was observeq for
becomes valid only fon>(I}. In this asymptotic regime a values up tm~(l). In one case the analytic formula hints at

further decrease of thie, is hard to detect. For this reason a slow decay off, in the asymptotic region, whereas in

we enlarged the asymptotic decay which can be seen fro nother case a “Markov-like” behavior is indicated. A clari-
r?ying rigorous result needs further analytical treatment.

Fig. 3.
In order to decide the functional character of this decay
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