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Intermittent systems play a prominent role in the field of dynamical phase transitions. Their extraordinary
characteristics also show up when applying the concept of block entropies to symbol sequences which are
generated through the method of symbolic dynamics. We investigate the dependence of those dynamical
entropies on the block lengthn. In the asymptotic limit, i.e., forn→`, an analytic treatment is possible when
starting from the assumption of independent laminar laps. The results are important for a refined characteriza-
tion of intermittent systems. Moreover, they bring intermittent systems in contact with information-carrying
sequences which exhibit a very special scaling behavior of dynamical entropies.@S1063-651X~96!10605-X#

PACS number~s!: 02.502r, 05.45.1b, 47.27.Cn, 47.27.Eq

I. INTRODUCTION

The notion of intermittency was first introduced in con-
nection with hydrodynamic systems at the transition point
from the laminar to turbulent regime. Manneville and
Pomeau numerically solved the differential equations of the
Lorenz model@1#. Above a threshold value for an external
control parameterr they observed the transition from a stable
periodic motion to a pattern where thelaminar regime was
interrupted bychaotic ~or turbulent! bursts. An appropriate
Poincare´ plot revealed the underlying mechanism: the tran-
sition could be related to a fixed point losing its stability
when the control parameterr exceeds the critical value. Of
special importance was their observation that this scenario
offered auniversal route to chaos@2#. Additionally it pro-
vides a universal mechanism for 1/f noise in nonlinear sys-
tems @3#. Subsequently intermittency has been detected in
many physical systems~see@4,5# and references therein!.

According to the different ways a fixed point can lose its
stability @4#, three types of intermittency~I,II,III ! are distin-
guished. Here, we will be mainly concerned with intermit-
tency type I; in this case there exists a maximal length of
laminar phases which will be denoted bym. The decisive
properties of an intermittent system are the length distribu-
tions for the laminar~turbulent! lengths. It is a common as-
sumption that the successive laps are independent of each
other@4,6,7#; this assumption often is formulated by describ-
ing the dynamics as aregenerative process.

Whereas the length distribution of laminar phases sensi-
tively depends on slight changes of the dynamics, the typical
length of chaotic bursts does not. This is easy to understand
since closing the narrow channel@4# a little further strongly
affects the laminar creep but the chaotic behavior outside the
channel region essentially remains the same. A proper res-
caling of time~by the inverse average chaotic length! allows
for an idealized description of the chaotic phases as a one
step process.

The model we consider here relates to a time discrete
intermittent dynamics. Successive laminar lengthsi ~for

i51, . . . ,m) are chosen independently according to a given
distribution p( i ). In the context of symbolic dynamics@8#
we only distinguish between the laminar region, symbol
‘‘0,’’ and the chaotic region, symbol ‘‘1.’’ Hence
a typical symbol sequence will look like
‘‘00000000001000000100000000001010001 . . . . ’’ We re-
gard the symbols ‘‘0’’ and ‘‘1’’ as elements of abinary
alphabet A5$0,1%. In the general case we deal with an al-
phabet consisting ofl letters, i.e.,A5$a1 , . . . ,al%.

The statistics of subsequences (c1 , . . . ,cn) ~with ciPA
; i51, . . . ,n) of length n, also namedn words, contains
information about the system under consideration. The sta-
tistics can be derived either by analyzing the frequencies of
n words excerpted from a sample string or by applying ana-
lytical methods. Here, we will use the last mentioned ap-
proach and hence do not have to care about finite sample size
effects @9,10#. We denote the probability of an arbitraryn
word by the symbolp(c1 , . . . ,cn).

The informational analysis of a dynamical system pro-
ceeds by inserting thosen-word probabilities into functionals
which fulfill the axioms of an information measure@11#. The
measures we use in this work are theblock entropies Hn
(n51,2, . . . ) @12# related to the Shannon information@13#:

Hn :52 (
~c1 , . . . ,cn!PAn

p~c1 , . . . ,cn!loglp~c1 , . . . ,cn!.

~1!

Choosing logarithms to basel is favorable since then the
inequality 0<Hn<n holds.

The Hn can be interpreted as the average uncertainty
when trying to predict ann word ~a trajectory segment of
lengthnt). Dividing Hn by n yields the average uncertainty
per symbol, i.e.,H(n):5Hn /n. Its limiting value for
n→` was named theentropy of the source@14#:

h:5 lim
n→`

H~n!. ~2!

The entropy of the source is closely connected with the
Kolmogorov-Sinai entropy@15,16#.*Electronic address: janf@summa.physik.hu-berlin.de
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The notion of amemoryassigned to a symbol sequence is
linked with the improvement of the prediction of a symbol
cn11 given knowledge of its prehistory (c1 , . . . ,cn). This
idea naturally involves conditional probabilities and, hence,
the corresponding informational quantitieshn are named
conditional entropies; they are defined by

hn :5K 2 (
an11PA

p~cn11uc1 , . . . ,cn!

3 loglp~cn11uc1 , . . . ,cn!L
~c1 , . . . ,cn!

~3!

5Hn112Hn~n51,2, . . .!. ~4!

Correlations existing between a subsequence (c1 , . . . ,cn)
and the symbolcn11 improve the chance of guessingcn11
successfully, i.e., the average uncertainty of prediction is di-
minished. Thus thehn will monotonically decline when in-
creasing the lengthn of noticed prehistory (c1 , . . . ,cn). It
can be shown that forstationary and ergodic sources@11,14#
the limit of the hn for n→` exists and coincides with the
entropy of the source, i.e.,

lim
n→`

hn5h. ~5!

The profile ofhn is directly related to theeffective measure
complexity~EMC! defined by Grassberger@17#:

EMC :5 (
n50

`

~hn2h!. ~6!

The specific way thehn approach this limit can be used to
characterize a dynamical system@18#. ForMarkov sources of
order m @19# the conditional entropies already reach their
limit for n5m, i.e., hn5h5Hm112Hm for all n>m @19#.
Hence such a Markov source possesses a memory ofm steps
@20#.

For most systems thehn decay exponentially@17,18,21#,
i.e., (hn2h);exp(2gn). Then the inverse decay rateg21

can be defined as an effective memory; a Markovian ap-
proximation of sufficiently high order will be a very effective
description.

A subexponential decay of the conditional entropies is an
exceptional but rather interesting case. Sze´pfalusy and co-
workers have shown that intermittent processes belong to
this type of system@18,22#. Moreover, a subexponential de-
cay was found for sequences which are not directly related to
a dynamical system but instead are the result of an evolu-
tionary process, e.g., literary texts and coded music@12,23–
25#. This observation inspires the intriguing task of searching
for a connection between intermittent dynamics and mecha-
nisms underlying the creation ofnatural symbol sequences.

In this paper we report on the informational analysis of a
binary sequence which was constructed by the aforemen-
tioned independent concatenation of laminar laps with ran-
domly distributed lengths. As explained above, it mimics the
symbolic dynamics of an intermittent system~type I!. We
present the result of a numerical simulation and, moreover,
an analytic formula for theHn valid in the asymptotic limit,

i.e., for n→`. The basic idea of this formula rests on the
fact that the distribution of laminar lengths will be reflected
by relative frequencies of subwords contained in a subse-
quence of lengthn@^ l &.

II. DERIVATION OF THE ASYMPTOTIC SCALING
BEHAVIOR

In a previously published paper@26# we have already de-
rived the expression to be evaluated yielding the block en-
tropy Hn . Here just repeat the basic arguments.

A sample string is constructed as explained in the Intro-
duction with ‘‘0’’ denoting the laminar phase and ‘‘1’’ the
chaotic burst~the end of the laminar phase! ~termination
symbol!. Hence an arbitraryn word excerpted from the
sample string is a binary sequence. It can be decomposed
into a collection of subwords of different lengths. Denoting
the length of thei th subword within then word by l i we can
symbolically represent thisn word by

n5~ l 1 , . . . ,l k! ~7!

with the restriction

(
i51

k

l i5n. ~8!

Special attention has to be paid to this restriction because the
first and last subword within then word are mostly cut out of
a longer subwords found in the sample string. The probabil-
ity of hitting a word of lengthi in the sample string ispi and
there are exactlyi different letters which can be chosen as
the starting position of the reading frame. Then follows the
bulk of phases in the center of then word and finally the
right edge is determined by the restriction~8!. It is important
to notice that in the limit of sufficiently longn words the
bulk will dominate the statistics. The different possibilities of
placing theintron symbol yield a factor( i51

m ipi which is
identified as the mean length and, henceforth, will be de-
noted by the symbol̂ l &. Note that there is a maximum
length denoted bym which means we are restricted to inter-
mittency of type I.

Because of selecting the laminar phases independently of
each other the probability for an arbitraryn word, denoted
P(n), can be written as

P~n!})
i51

k

p~ l i !. ~9!

Since permuting the order of the laminar phases leaves
this probability invariant there is a wholeclass of equivalent
words. This fact motivates an occupancy number representa-
tion designating the whole class by the symbol
k:5(k1 , . . . ,km). Here kiP$0,1, . . . ,n% stands for the
number of laminar phases within a representativen word
which have the lengthi . The restriction to a fixed word
length ~8! transforms in this representation to

(
i51

m

iki5n. ~10!
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We can readily write down the contribution of a certain
class to then-word entropy:

H~k1 , . . . ,km!:52^ l &
~( i51

m ki !!

P j51
m kj !

3H)
i51

m

p~ i !kiJ log2H )
j51

m

p~ j !kjJ . ~11!

The first factor is linked to the starting phasel 1 as explained
above. The next is a combinatorial expression reflecting the
number of the members of the class (k1 , . . . ,km). The third
term is the probability of a representative of that class and
the last is the usual information gained when noticing this
n word.

Defining the class probabilityP (k1 , . . . ,km) by

P ~k1 , . . . ,km!:5^ l &
~( i51

m ki !!

P j51
m kj !

H)
i51

m

p~ i !kiJ , ~12!

Eq. ~11! can equivalently be written as

H~k1 , . . . ,km!52P ~k1 , . . . ,km!3S (
i51

m

ki log2p~ i !D .
~13!

Summing over all classes compatible with restriction~10!
the completen-word entropy yields

Hn52(
i51

m

^ki&~k1 , . . . ,km!
† log2p~ i !, ~14!

where we have used the abbreviation

^ki&~k1 , . . . ,km!
† :5 ( †

k1 , . . . ,km
P ~k1 , . . . ,km!ki ~15!

and where the dagger is a reminder of the condition~10!.
We account for the restriction~10! by inserting a Kro-

neckerd and additionally introduce a new variableN to-
gether with another Kroneckerd which imposes the con-
straintN5( i51

m ki . Hence,

^ki&~k1 , . . . ,km!
† 5^ l & (

N51

n

(
k150

n

. . . (
km50

n

3
N!

k1! •••km!
p~1!k1•••p~m!km

3dS (
i51

m

iki ,nD dS (
i51

m

ki ,ND ki . ~16!

The replacement

ki5i
]

]v i
@exp~2 iv•k!#uv50 ~17!

means that we solve the problem using the characteristic
function. @Throughout the text we adopt the following nota-
tion: i is the imaginary unit, not to be confused with the
index i ; a:5(a1 , . . . ,am) and a•b:5( i51

m aibi ]. This
yields

^ki&~k1 , . . . ,km!
† 5i ^ l &

]

]v i
S (
N51

n

(
k150

n

. . . (
km50

n

3
N!

k1! •••km!
p~1!k1•••p~m!km

3dS (
i51

m

iki ,nD dS (
i51

m

ki ,ND
3exp~2iv•k!DU

v50

. ~18!

Defining now

F~v!:5 (
N51

n

(
k150

n

. . . (
km50

n
N!

k1! •••km!
p~1!k1•••p~m!km

3dS (
i51

m

iki ,nD dS (
i51

m

ki ,ND exp~2iv•k!, ~19!

we can write Eq.~18! as

^ki&~k1 , . . . ,km!
† 5i ^ l &

]

]v i
@F~v!#uv50 ~20!

and Eq.~14! as

Hn52(
i51

m

i ^ l &
]

]v i
@F~v!#uv50log2p~ i !. ~21!

Hence the remaining task is to calculate the characteristic
functionF(v).

The first step in this direction is to replace the sum by an
integral, the discrete argumentsk1 , . . . ,km and N by real
numbers, and accordingly the Kroneckerd ’s by d distribu-
tions; i.e.,

F~v!5E
1

n

dNE
0

n

dk1•••E
0

n

dkm
N!

k1! •••km!

3p~1!k1•••p~m!km

3dS (
i51

m

iki2nD dS (
i51

m

ki2ND exp~2iv•k!.

~22!

Next we use Stirling’s formula for the factorials
x!5(x/e)xA2pxexp(Qx/12x) with 0,Qx,1 and approxi-
mateQx/12x'0. This is allowed forn→` since then~with
very high probability! all theki for i51, . . . ,m andN even-
tually become sufficiently large. The precise mathematical
argument can be found in@27#. This yields for the character-
istic function
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F~v!'E
1

n

dNE
0

n

dk1•••E
0

n

dkm

3
A2pN

A2pk1•••A2pkm
expS (

i51

m

ki ln
p~ i !

ki /N
D

3dS (
i51

m

iki2nD dS (
i51

m

ki2ND exp~2iv•k!.

~23!

For reasons of convenience we definepi :5p( i ). Since in
the asymptotic regimen→` the relative frequencies of the

different laminar phases approach the underlying probabili-
ties of the length distribution, we expandki /N aroundpi ,
which corresponds to the substitution

ki5N~pi1h i !, ~24!

dmkdN5NmdmhdN. ~25!

Theh i are the relative frequencies’ deviations from the prob-
abilities. We obtain

F~v!'E
1

n

dNE
2p1

n/N2p1
dh1•••E

2pm

n/N2pm
dhm

NmA2pN

A2pNp1~11h1 /p1!•••A2pNpm~11hm /pm!
expS 2(

i51

m

N~pi1h i !

3Fh i

pi
2
1

2

h i
2

pi
2 1

1

3

h i
3

pi
3 2•••G D dSN(

i51

m

ih i1N^ l &2nD dSN(
i51

m

h i D exp@2iNv•~p1h!#, ~26!

where the~infinite! series in square brackets corresponds to
ln(11h i /pi).

Now we choose the Fourier representation for bothd dis-
tributions:

dSN(
i51

m

ih i1N^ l &2nD
5E

2`

` da

2p
expF2iaSN(

i51

m

ih i1N^ l &2nD G ,
~27!

dSN(
i51

m

h i D 5E
2`

` db

2p
expS 2ibN(

i51

m

h i D . ~28!

In the limit n→` we retain just the most dominant terms in
h, which corresponds to retaining only the quadratic term in
the exponential~originating from the polynomial distribu-
tion; the linear term is absent because of the condition
( i51
m h i50) and, furthermore, to approximating the brackets

under the square roots by the factor 1. Of course, thed
distributions are not affected by any approximation. This
yields

F~v!'E
1

n

dNE
2`

` da

2pE2`

` db

2pE2p1

n/N2p1
dh1•••

3E
2pm

n/N2pm
dhm

A2pN

A2pp1 /N•••A2ppm /N

3expS 2
1

2(i51

m h i
2

pi /N
D

3expF2iaSN(
i51

m

ih i1N^ l &2nD G
3expS 2ibN(

i51

m

h i D exp@2iNv•~p1h!#.

~29!

We see that the integrand is a product ofm Gaussian func-
tions, originating from the polynomial distribution, multi-
plied by (33m) exponentials linear in theh i , two originat-
ing from the d distributions and one stemming from the
characteristic function.

In the limit n→` the value ofN tends to infinity too~in
fact, in this caseN→n/^ l &). Since the variance of the Gaus-
sians is given byAs i5Api /N;1/AN the integrand eventu-
ally concentrates around valuesh i'0, and a replacement of
the limits2pi (n/N2pi) by 2` (1`) results in negligible
corrections. Performing them integrations with respect to the
h i yields
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F~v!'E
1

n

dNE
2`

` da

2pE2`

` db

2p
A2pNexp@2iNv•p

2ia~N^ l &2n!#expS 2
1

2
N(
i51

m

pi~ ia1b1v i !
2D .
~30!

Next we perform the integration with respect tob. Defining

s l l :5^ l 2&2^ l &25(
i51

m

i 2pi2 (
i , j51

m

i jp ipj ,

s lv :5^ lv&2^ l &^v&5(
i51

m

iv i pi2 (
i , j51

m

iv j pipj ,

svv :5^v2&2^v&25(
i51

m

v i
2pi2 (

i , j51

m

v iv j pipj ,

we obtain

F~v!'E
1

n

dNE
2`

` da

2p
exp@2iNv•p2ia~N^ l &2n!#

3expS 2
1

2
N~a2s l l12as lv1svv! D . ~31!

The integration with respect toa can be performed and we
obtain

F~v!'
1

A2ps l l
E
1

ndN

AN
exp~2iNv•p!expS 2

~^ l &2n/N!21s l lsvv2s lv
2 2i 2s lv~^ l &2n/N!

2s l l /N
D . ~32!

Performing the substitutiony:5^ l &2n/N yields

F~v!'
1

^ l &

1

A2ps l l ^ l &/n
Ê

l &2n

^ l &21 dy

~12y/^ l &!3/2
expS 2

~y21s l lsvv2s lv
2 !1i ~2s l lv•p22s lvy!

~2s l l ^ l &/n!~12y/^ l &!
D . ~33!

For the partial derivative with respect tov i we achieve

i ^ l &
]

]v i
@F~v!#uv505

n

^ l &
pi3

1

A2ps l l ^ l &/n
Ê

l &2n

^ l &21 dy

~12y/^ l &!5/2
expS 2

y2

~2s l l ^ l &/n!

1

~12y/^ l &! D S 11
~^ l &2 i !y

s l l
D . ~34!

In accordance with Eq.~21! we finally end up with

Hn5
n

^ l & S 2(
i51

m

pi log2 pi D I 0~n,^ l &,s l l !

1
n

^ l & S 2(
i51

m

pi log2pi
^ l &2 i

s l l
D I 1~n,^ l &,s l l ! ~35!

5
n

^ l &
H@p#I 0~n,^ l &,s l l !1

n

^ l &
A@p#I 1~n,^ l &,s l l !,

~36!

where the functionsI 0 andI 1 are defined by

I 0~n,^ l &,s l l !:5
1

A2ps l l ^ l &/n
Ê

l &2n

^ l &21 dy

~12y/^ l &!5/2

3expS 2
y2

~2s l l ^ l &/n!

1

~12y/^ l &! D ,
~37!

I 1~n,^ l &,s!:5
1

A2ps l l ^ l &/n
Ê

l &2n

^ l &21 ydy

~12y/^ l &!5/2

3expS 2
y2

~2s l l ^ l &/n!

1

~12y/^ l &! D .
~38!

Note thatH@p# is just the entropy of the length distribution
of the laminar phases. It can be shown that the functional
A@p# vanishes for distributions that are symmetric with re-
spect to the mean lengtĥl &; hence it can be regarded as an
asymmetry term.

For sufficiently largen the integrands ofI 0 andI 1 es-
sentially are dominated by the Gaussian part. In the asymp-
totic limit n→` the integrals can be estimated safely by
replacing the finite limits by2` (1`) and additionally by
approximating the terms 12y/^ l &'1. This yields
limn→`I 051 and limn→`I 150. Hence,

Hn 5
n→`

2
n

^ l &
H@p#. ~39!

This is exactly what was obtained by intuitive reasoning
@26#.
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An analytic evaluation of the integrals~37! and~38! is not
possible and most basic approximations which render the
integrals calculable eventually sacrifice the slight deviations
from the simple Gaussian form, hence destroying the whole
effect. This is even worse when intending to calculate the
hn since then we have to subtract two quantities,Hn11 and
Hn , which differ only slightly. We regard formula~36!
supplemented by~37! and~38! as our final result. In the next
section we will exemplify the theoretical result by evaluating
the integrals~and all other ingredients! numerically.

III. NUMERICAL EVALUATION AND SIMULATION

The choice of an example is restricted by the fact that we
want the asymptotic region, i.e.,n@^ l &, not to be too far out.
On the other hand, it should not be too simple in order to see

some deviation from a simple Bernoulli process. We expect
a rapid decrease of thehn approaching the limit

h5
H@p#

^ l &
~40!

for values around̂ l &. The final decay of thehn for n.^ l &
should be described by our theoretical formula~36!.

The statistics of the intermittent sequence we consider is
governed completely by the distribution of laminar lengths
p( i ). We choose

p~ i !5
i 10exp~22i !

( j51
15 p~ j !

. ~41!

A histogram plot of this distribution is given in Fig. 1.
The ingredients for our formula~36! can be calculated

and read^ l &'5.5, s l l'2.75, H@p#'2.73, A@p#'20.26.
This choice is supposed to mimic the length distribution of
words in a realistic text.

FIG. 1. A histogram plot of the chosen laminar length distribu-
tion ~41! with resulting valueŝ l &'5.5, s l l'2.75, H@p#'2.73,
A@p#'20.26.

FIG. 2. The conditional entropies for the length distribution~41!
in the rangen50,1, . . . ,50; black circles: string simulation~sample
length 107) results for n50,1, . . . ,24; diamonds: numerically
evaluated formula~36! for n510, . . .,50. The dashed line shows
the limit h50.496 734. Note that the finite sample size effect is
crucial for simulation datahn close to the limith.

FIG. 3. Enlarged asymptotic decay region as dictated by the
numerically evaluated formula~36!. A slow decay can be detected.
The dashed line shows the limith50.496 734.

FIG. 4. A double logarithmic representation of (hn2h) @nu-
merically evaluated formula~36!# yields a straight line. This indi-
cates a power law decay, i.e., (hn2h);n2a. The exponent was
obtained by a nonlinear fit yieldinga50.492.
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According to ~40! we calculate limn→`hn5h
50.496 734 . . . . Figure 2 depicts thehn for values in the
rangen50,1, . . . ,50; black circles are the string simulation
~sample length 107) results forn50,1, . . . ,24; diamonds are
the numerically evaluated formula~36! for n510, . . .,50.

The plot clearly shows the rapid decay for values up to
n'^ l &'5. The numerical values are affected by the finite
sample size which generally tends to diminish the values of
hn . Moreover, it can be seen that our analytical approach
becomes valid only forn.^ l &. In this asymptotic regime a
further decrease of thehn is hard to detect. For this reason
we enlarged the asymptotic decay which can be seen from
Fig. 3.

In order to decide the functional character of this decay
we subtract the valueh50.496 734 and represent data in a
double logarithmic plot; see Fig. 4.

The result is a declining straight line which indicates a
power law decay. A nonlinear fit yields

~hn2h!;
0.006 462

n0.492
. ~42!

Surprisingly, the asymptotic decay is of a subexponential
type.

One could argue that this is a generic effect of the asymp-
totic formula and not of the system itself. A similar investi-

gation for the distributionp( i )5 1
4 for i51,2,3,4 yields a

different behavior. The representation of the numerically
evaluated formula~36! corresponding to Fig. 3 in this case
indicates a ‘‘Markov-like’’ behavior, i.e., thehn reach their
theoretical limith50.8 for n516 ~see Fig. 5!.

Of course, this is no proof since our numerical evaluation
is restricted by finite accuracy. At least this question may
stimulate further investigations.

IV. CONCLUSION

We have investigated the decay of conditional entropies
derived from binary sequences which were related to a re-
generative process, i.e., intermittency type I with indepen-
dent laminar phases. Investigations were performed by string
simulations~affected by finite sample size effects! and addi-
tionally by applying a theoretical approach valid in the as-
ymptotic regimen→`. In accordance with intuition a rapid
decay close to the limit valueh5H@p#/^ l & was observed for
values up ton'^ l &. In one case the analytic formula hints at
a slow decay ofhn in the asymptotic region, whereas in
another case a ‘‘Markov-like’’ behavior is indicated. A clari-
fying rigorous result needs further analytical treatment.
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FIG. 5. Decay of conditional entropies for an equidistribution of
laminar lengths p( i )50.25 (i51,2,3,4). The data indicate a
‘‘Markov-like’’ behavior ~of order 16!.
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